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Summary

This report documents the results of a computational study done to compute the inviscid longitudinal

aerodynamic characteristics of the Space Shuttle Orbiter for Mach numbers 10 and 15 at angles of attack of

40, 50, 55, and 60 degrees. These computations were done to provide limited aerodynamic data in support

of the Orbiter contingency abort task. The Orbiter had all the control surfaces in the undeflected position.

The unstructured grid software FELISA with the equilibrium air option was used for these computations.

Normal force, axial force, and pitching moment coefficients were computed. The hinge moment coefficients of

the bodyflap and the inboard and outboard elevons were also computed. These results were compared with

data from Operational Aerodynamic Data Book (OADB) and those computed using the software GASP.

The comparison with the GASP results showed excellent agreement in C,_ and CA, and also in the flap

and elevon hinge moment coefficients at all the points. The present axial force coefficients were smaller

than those computed by GASP. Similar agreement was notice with the elevon and bodyflap hinge moments.

There were noticeable differences between the present results and those from the OADB at angles of attack
greater than 50 degrees.

Software

The present computations were done using the unstructured grid inviscid flow software FELISA. This soft-

ware consists of unstructured surface triangulator, volume grid generator, and flow solvers. The flow solver

can be run with any of the options including the perfect gas, equilibrium gases (air and Mars gas), and Mars

real gas. More information about FELISA may be found in [1]. FELISA software has been successfully used

for inviscid hypersonic flow computations, (See for example [2], [3], [4], and [5].) The present computations

were done using the hypersonic flow solver with the equilibrium air option.

Grids

Two separate grids were used in these computations. The two grids had the same spacing distributions every

where except near the nose of the Orbiter. Around the nose, the minimum spacing was 2 inches in the coarse

grid, whereas it was reduced to 0.2 inches in the fine grid. This led to better capturing of the flow features

near the nose of the Orbiter. A view of the two grids on the symmetry plane near the Orbiter nose is shown

in Fig. 1 The information on these grids is given here:

No. of Surface Points

No. of Surface Triangles
No. of Tetrahedral Elements

No. of Nodes

Fine Grid Coarse Grid

91,895 64,365

183,786 128,726

10,950,214 7,979,561

1,855,685 1,350,843

Freestream Conditions

The freestream conditions for the two Mach number cases used in the present computations are as follows:
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Figure 1: Comparison of the surface triangulations near the nose.



MachNumber 10.0 15.0
Velocity 10,552ft/s 15,679.05ft/s

(3217.2m/s) (4779.0m/s)
Temperature 463.7°R 454.7°R

(257.6K) (252.6K)
Density 5.28E-6slugs/ft3 7.77E-6slugs/ft3

(2.7213E-3kg/m3) (4.0047E-3kg/m3)

Thecomputednormalandaxial forces,the pitchingmoment,the bodyflaphingemoment,andthe
elevonhingemomentswerenon-dimensionalizedin theconventionalway.Thereferencequantitiesusedfor
thispurposeareasfollows:

Coefficients CN, CA, C,,_ Flap H.M. Elevon H.M.

Reference Area (in 2) 387,360 19,440 30,240

Reference Length (in) 474.72 81.0 90.7

The pitching moment reference point is located on the symmetry plane, 841.7 in. behind the nose and

38.5 in. above the longitudinal axis. The longitudinal axis passes through the nose of the Orbiter.
The hinge moment of the bodyflap was computed about the hinge line located at a distance of 1296

in. from the nose and 51 inches below the the longitudinal axis. This hinge line is perpendicular to the

symmetry plane.

The hinge moment of the elevon was computed in a similar manner The elevon hinge line is located at a

distance of 1151 in. from nose. The hinge line meets the symmetry plane at 76.652 in. below the longitudinal

axis, and makes a dihedral angle of 5.229 deg.

Results

The computations were done on the NAS Origin 2000 parallel computers using 64 processors. The results are

listed in Table 1. Similar computations had been done by Papadopoulos, P.E. et al, ([6]) assuming 5-species

nonequilibrium air. Present results and the GASP results are shown plotted in Figures 2 - 8 along with the

corresponding data from OADB. See [7]. It should be noted that the OADB and GASP results are for Mach
15.

Refining the grid near the Orbiter nose did not make any noticeable differences in the results at Mach
10. The differences in the results obtained using the coarse and the fine grids were less than 1%. The

contribution of the nose to the aerodynamic coefficients is predicted adequately by the coarse grid. The fine

grid, however, allowed better capturing of the sonic line on the symmetry plane (See Figure 5.)

Figures 4 indicates that the present values of CA are lower than both OADB data and the GASP results.

This is the result of absence of skin friction in the present computations. At high Mach numbers and
particularly at high angles of attack, the normal force is primarily due to the pressures on the windside of

the vehicle. Inviscid flow computations adequately predict the flow over the windside surfaces. The OADB

C,_ and CA values deviate from the FELISA computations as well as the GASP results at angles of attack

greater than 50 degrees.

Hinge moments of the bodyflap, and the inboard and the outboard elevons were computed, and are listed

in Table 2. Results are shown plotted in Figure 6 - 8. Also shown plotted in these figures are the hinge

moment coefficients from OADB and those computed using the GASP software.



MachNo. Angleof Attack CA CN C._ Grid

(degree)

15.0 40.0 1.1666E+00 5.2610E-02 -2.1479E-02 Coarse

15.0 50.0 1.6219E+00 5.3694E-02 -6.1119E-02 Coarse

15.0 55.0 1.8389E+00 5.2696E-02 -8.6418E-02 Coarse

15.0 60.0 2.0361E+00 5.0532E-02 -1.1205E-01 Coarse

10.0 40.0 1.2100E+00 5.1487E-02 -3.8619E-02 Coarse

10.0 50.0 1.6598E+00 5.2579E-02 -7.9042E-02 Coarse

10.0 60.0 2.0509E+00 5.0837E-02 -1.1930E-01 Coarse

10.0 40.0 1.2103E+00 5.1676E-02 -3.8489E-02 Fine

10.0 50.0 1.6601E+00 5.2720E-02 -7.8926E-02 Fine

10.0 60.0 2.0509E+00 5.1016E-02 -1.1926E-01 Fine

Table 1: Inviscid aeroynamic data for Mach 10 and 15.
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Figure 2: Pitching moment coefficient
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Figure 5: Symmetry plane sonic lines (fine grid); Mach 10, a=40, 50, and 60 deg.

The OADB hinge moment coefficients curves have an inflexion point at about an angle of attack of 45

degrees. However, the computed data do not exhibit this trend. It may be observed that the FELISA results

agree very well with the GASP results. The computed inboard elevon hinge moment coefficients agree with

the OADB data upto an angle of attack of 60 degrees. The maximum difference is about 0.025 at (_ = 50

degrees. The outboard elevon hinge moment coefficients agree with the OADB data only upto an angle

of attack of 50 degrees. At angles of attacks greater than 50 degrees, the outboard elevon hinge moment

coefficients continue to increase negatively, whereas the OADB data tend to level off. At a = 60 degrees the

difference between the computed and OADB data is 0.25. The computred bodyflap hinge moment coefficients

agree with the OADB data except at an angle of attack of 60 degrees where the difference between the two
is 0.05.



MachNo. Angleof Attack FlapHM ElevonHM ElevonHM Grid

(degree) (Inboard) (Outboard)

15.0 40.0

15.0 50.0

15.0 55.0

15.0 60.0

-2.7225E-01 -1.4658E-01 -7.3060E-02 Coarse

-4.2318E-01 -2.2984E-01 -1.0923E-01 Coarse

-5.0862E-01 -2.7592E-01 -1.2916E-01 Coarse

-5.9762E-01 -3.2156E-01 -1.4806E-01 Coarse

10.0 40.0 -2.9027E-01 -1.6308E-01 -8.1999E-02 Fine

10.0 50.0 -4.4477E-01 -2.5192E-01 -1.2019E-01 Fine

10.0 60.0 -6.0888E-01 -3.3267E-01 -1.5078E-01 Fine

Table 2: Flap and elevon hinge moment coefficients for Mach 10 and 15.
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Figure 6: Bodyflap hinge moment coefficients
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